COMBINATORICA

Bolyai Society - Springer-Verlag

AN UPPER BOUND ON THE SIZE OF THE SNAKE-IN-THE-BOX

GILLES ZÉMOR

Received May 31, 1996

A snake in a graph is a simple cycle without chords. We give an upper bound on the size of a snake S in the *n*-dimensional cube of the form $|S| \le 2^{n-1}(1-n^{1/2}/89+O(1/n))$.

1. Introduction

The n-cube \mathbf{Q}^n can be considered as the graph whose vertices are indexed by the binary n-tuples and such that two vertices are adjacent if and only if the corresponding n-tuples differ in exactly one position. A snake in a graph is a simple cycle without chords. Let \mathbf{S} denote a snake of the longest size in \mathbf{Q}^n . The problem of determining the size $|\mathbf{S}|$ of \mathbf{S} was first studied by Kautz [8], and was initially motivated by the design of error-checking codes for analog to digital conversion. It has since been shown to be connected to various applications, see [2] and references therein. The study of $|\mathbf{S}|$ has been investigated by a number of authors: the order of magnitude of $|\mathbf{S}|$ was first established by Evdomikov [6], who proved the existence of λ such that $|\mathbf{S}| \geq \lambda 2^n$. The current best lower bound on λ is due to Abbot and Katchalski [2] who obtain $\lambda \geq 0.30$. Regarding upper bounds, it is straightforward to obtain $|\mathbf{S}| \leq 2^{n-1} n/(n-1)$, and this was improved by several people [1, 3, 7, 10] to $|\mathbf{S}| \leq 2^{n-1}$. Since then, a number of successive improvements were obtained, [9, 5, 4, 12], the latest being due to Snevely [11] who proved:

$$|\mathbf{S}| \le 2^{n-1} \left(1 - \frac{1}{20n - 41} \right)$$
 for $n \ge 12$.

We shall improve on this for growing n by showing:

Mathematics Subject Classification (1991): 05C38, 68R10, 94B60, 94B65

Theorem 1.1. For all n,

$$|\mathbf{S}| \le 1 + 2^{n-1} \frac{6n}{6n + \frac{1}{6\sqrt{6}}n^{1/2} - 7} \le 2^{n-1} \left(1 - \frac{1}{89n^{1/2}} + O\left(\frac{1}{n}\right) \right).$$

2. Preliminaries and sketch of proof

Let the vertex set of \mathbb{Q}^n be indexed by $\{0,1\}^n$. We shall consider each edge to be labeled by an element of $[n] = \{1,2,\cdots,n\}$; e.g. we shall write $A \stackrel{e}{\longrightarrow} B$ to mean that adjacent vertices A and B correspond to n-tuples that differ in position e.

It will also be convenient to us to identify labels, i.e. elements of [n], with the n-tuples of weight 1 and apply addition in $\{0,1\}^n$ (componentwise addition modulo 2) to both vertices and edges. For example we shall allow ourselves to write $A \stackrel{e}{-} B$ alternatively as A + e = B or A + B = e. So that no confusion occurs, vertices will always be denoted by uppercase letters and edges labeled by lowercase letters.

Segments are subpaths of S, e.g. $A \stackrel{e}{=} B \stackrel{f}{=} C$, and are denoted by greek lowercase letters. If σ is a segment, we shall allow ourselves the freedom of writing $V \in \sigma$ and $e \in \sigma$ to mean that V is a vertex of σ and e labels an edge of σ respectively. Context should leave no ambiguity. If A and B are vertices of S, denote by $d_S(A, B)$ the distance between A and B in S, i.e. the length of the shortest segment of S joining A and B.

It may be convenient to keep in mind the following characteristic property of S: if σ is a segment of S of size $2 \le |\sigma| \le |S| - 2$, then there exist two distinct elements of [n] that each label an odd number of edges of σ .

Let **T** be the subgraph of \mathbf{Q}^n induced by the set of vertices not in **S**. By the degree $\delta(V)$ of a vertex $V \in \mathbf{T}$, we shall mean the degree of V in **T**, i.e. the number of vertices of **T** adjacent to V.

Our basic strategy is to study the total degree in T, i.e. the quantity

$$\Delta = \sum_{V \in \mathbf{T}} \delta(V).$$

We have:

Lemma 2.1.
$$n2^{n-1} = |\mathbf{S}|(n-1) + \Delta/2$$
.

Proof. $n2^{n-1}$ is the total number of edges in \mathbb{Q}^n . There are $|\mathbf{S}|$ edges in \mathbb{S} . There are $|\mathbf{S}|(n-2)$ edges with one vertex in \mathbb{S} and one vertex in \mathbb{T} . There are $\Delta/2$ edges in \mathbb{T} .

Any lower bound on Δ will therefore yield an upper bound on |S|.

Sketch of the main argument and plan of the paper.

We are looking for a lower bound on Δ . The first thing we shall do is show that **T** must contain vertices of high degree. More precisely, we shall show that any segment of **S** of length 7 contains a vertex V such that some neighbour $N \in \mathbf{T}$ of V has degree $\delta(N) \geq n/4$. This first argument is the object of Section 3. Unfortunately, this in itself is not enough to yield a good evaluation of Δ because, as we go over all segments of length 7 of **S**, we may produce the same vertices of **T** of high degree (linear in n) many times.

So the next thing we do is introduce a second argument. The latter says essentially that whenever the first argument of Section 3 produces the same vertex N of high degree several times, this in turn must produce more vertices of \mathbf{T} of high degree.

This second argument hinges on a crucial feature of the vertices of high degree auncovered in Section 3 which can be formulated as follows:

it is possible to construct a set $\mathcal S$ of vertex-disjoint segments σ of $\mathbf S$ (which we call heavy segments) such that, for each $\sigma \in \mathcal S$, there exists $v \in [n]$ which labels both an edge of σ and an edge $O \longrightarrow N$ where $O \in \sigma$ and $N \in \mathbf T$ with $\delta(N) \ge n/4$. Furthermore, the number of segments in $\mathcal S$ is linear in $|\mathbf S|$. This is formalized in Section 4.

The way the segments of \mathcal{S} can produce more vertices of \mathbf{T} of high degree is the object of Section 5.

Section 6 then studies the resulting overall situation which can be summarized as follows. Either the first argument produces many vertices of \mathbf{T} of high degree, and hence a good lower bound on Δ : or not, but then the second argument takes over. The lower the estimation of Δ given by one argument, the higher the estimation given by the other. A minimal unconditional lower bound on Δ is obtained when both arguments yield the same estimation of Δ which is shown to be of order of magnitude $|\mathbf{S}|\sqrt{n}$. This yields theorem 1.1.

3. Looking for vertices of T with high degree

We shall make repeated use of the following easy fact.

Lemma 3.1. Let A, B, C, D, be distinct vertices of **T** such that A is adjacent to B, C and D. Then

$$\delta(A) + \delta(B) + \delta(C) + \delta(D) \ge n$$

In particular, one of the vertices A, B, C, D has degree greater than or equal to n/4.

Proof. For every label $e \in [n]$, A+e, B+e, C+e, D+e may not simultaneously lie on the snake, because they are distinct and A+e is adjacent to the three others.

The following lemma is the main result of this section.

Lemma 3.2. Suppose $|\mathbf{S}| \ge 9$. Let $V_0 \stackrel{e_1}{=} V_1 \stackrel{e_2}{=} V_2 \cdots \stackrel{e_7}{=} V_7$ be a segment of length 7 of the snake \mathbf{S} . There exists a vertex $N \in \mathbf{T}$, $i \in \{0, 1, \dots, 7\}$, and $j \in \{1, 2, \dots, 7\}$ such that $(i, j) \ne (0, 7)$, $(i, j) \ne (7, 1)$ and

- $\delta(N) \geq n/4$.
- N is a neighbour of V_i and $N + V_i = e_i$.

The proof of Lemma 3.2 consists of finding, among vertices of the form $V_i + e_j$, 4 vertices satisfying Lemma 3.1. We do this through some intermediate lemmas. It will be implicit in the remainder of the section that $|\mathbf{S}| \ge 9$.

Lemma 3.3. Let $X \stackrel{x}{\longrightarrow} V_0 \stackrel{e_1}{\longrightarrow} V_1 \stackrel{e_2}{\longrightarrow} V_2 \stackrel{e_3}{\longrightarrow} V_3 \stackrel{e_4}{\longrightarrow} V_4 \stackrel{y}{\longrightarrow} Y$ be a segment of S. Suppose $e_1 \neq e_4$. Then one of the following holds.

- (i) There is a vertex of the form $V_i + e_j$, $0 \le i \le 4$, $1 \le j \le 4$, which is in **T** and of degree $\ge n/4$.
- (ii) $x = e_4$ and $y = e_1$.
- (iii) $x=e_3$ and $y=e_2$.

Proof. $(V_1+e_4)+(V_0+e_4)=e_1, (V_1+e_4)+(V_4+e_2)=e_3, (V_1+e_4)+(V_4+e_3)=e_2,$ so that V_1+e_4 is adjacent to $V_0+e_4, V_4+e_2, V_4+e_3$. Similarly, V_3+e_1 is adjacent to $V_4+e_1, V_0+e_2, V_0+e_3$. It is readily checked that if neither $x=e_4$ and $y=e_1$ nor $x=e_3$ and $y=e_2$, then either $V_0+e_4, V_1+e_4, V_4+e_2, V_4+e_3$ are all in **T**, or $V_0+e_2, V_0+e_3, V_3+e_1, V_4+e_1$ are all in **T**; so that Lemma 3.1 applies to one of those two sets of four vertices. (See figure 1).

Lemma 3.4. Let $X = V_0 = V_1 = V_2 = V_2 = V_3 = V_4 = V$

$$V_0 \stackrel{e_1}{=} V_1 \stackrel{e_2}{=} V_2 \stackrel{e_3}{=} V_3 \stackrel{e_4}{=} V_4 \stackrel{y}{=} Y \stackrel{z}{=} Z$$

satisfies conclusion (i) of Lemma 3.3.

Proof. We need only check that neither $y=e_1$ and $z=e_2$ (ii) nor $e_1=e_4$ and $z=e_3$ (iii) hold.

We have supposed $e_1 \neq e_4$, so that (iii) does not hold. Furthermore, we have $X + Z = x + e_1 + e_2 + e_3 + e_4 + y + z = e_2 + e_3 + z$. Hence, because X and Z are nonadjacent vertices of S, $z \neq e_2$. Therefore (ii) does not hold.

Lemma 3.5. Let $X \stackrel{x}{=} V_0 \stackrel{e_1}{=} V_1 \stackrel{e_2}{=} V_2 \stackrel{e_3}{=} V_3 \stackrel{e_4}{=} V_4 \stackrel{y}{=} Y \stackrel{z}{=} Z$ be a segment of **S**. Suppose $e_1 \neq e_4$. Suppose $x = e_3$ and $y = e_2$. Then one of the vertices $V_0 + z$, $V_1 + z$, $V_2 + z$, $Z + e_4$, $Z + e_3$ is in **T** and of degree $\geq n/4$.

Proof. V_1+z is clearly adjacent to V_0+z and V_2+z . Besides, $(V_1+z)+(Z+e_3)=e_4$ and $(V_1+z)+(Z+e_4)=e_3$, so that V_1+Z is also adjacent to $Z+e_3$ and $Z+e_4$. We

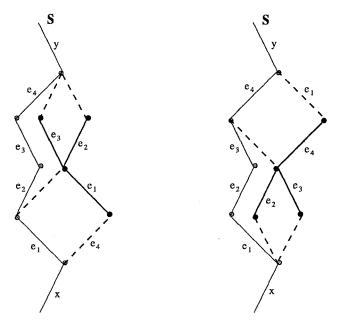


Fig. 1. Two potential vertices of T of degree 3

have $V_4+Z=e_2+z$, $V_1+Z=e_3+e_4+z$ and $X+Z=e_1+e_4+z$: from which we deduce, since Z is neither equal nor ajacent to X,V_1 and V_4 , that $z\neq e_i$ for i=1,2,3,4. Hence, either $V_0+z,V_1+z,V_2+z,Z+e_4$ are all in T or $V_0+z,V_1+z,V_2+z,Z+e_3$ are all in T, and Lemma 3.1 applies to one of those two sets of four vertices.

Proof of Lemma 3.2.

- If $e_1 \neq e_4$, then either Lemma 3.3 or Lemma 3.4 or Lemma 3.4 yields a vertex $V_i + e_j$ of the proper form, for $i \in \{0, \dots 6\}$ and $j \in \{1, \dots, 6\}$.
- If $e_1 = e_4$, then $V_0 + V_5 = e_2 + e_3 + e_5$ implies $e_5 \neq e_2$. Therefore we can apply the above argument to the segment $V_1 \cdots V_7$ instead of $V_0 \cdots V_6$. We obtain, again through Lemmas 3.3, 3.4, 3.5, a vertex $V_i + e_j$ of the proper form, for $i \in \{1, \dots, 7\}$ and $j \in \{2, \dots, 7\}$.

4. Heavy segments of S

We now reformulate the main result of the preceding section, i.e. Lemma 3.2, in a form more suitable for further study. For this we introduce the following definition.

Definition. A heavy segment or h-segment of S is a triple (σ, N, v) where

• σ is a segment of length 10 of S

$$V_{-5} \stackrel{e_{-5}}{=} V_{-4} \cdots V_{-1} \stackrel{e_{-1}}{=} O \stackrel{e_{1}}{=} V_{1} \cdots V_{4} \stackrel{e_{5}}{=} V_{5}$$

- N is a vertex of **T** such that $\delta(N) \ge n/4$
- $v \in [n]$ is a label such that N is adjacent to O and O + N = v: furthermore, $V_i + v \in \mathbf{S}$ for some $i \in \{-5, \dots, -1, 1, \dots, 5\}$.

Remark. This last condition means that v labels either an edge of σ , or one of the two edges of S not in σ but adjacent to one of the endpoints of σ .

We shall say that two h-segments (σ, N, v) and (σ', N', v') are disjoint if the segments σ and σ' have no common vertex. (We might have N = N', though).

From now on we shall lighten notation by referring to an h-segment simply by σ , and shall refer to the associated vertex and label by $N(\sigma)$ and $v(\sigma)$.

A consequence of Lemma 3.2 is the following.

Lemma 4.1. There exists a set \mathcal{S} of pairwise disjoint h-segments of S of cardinality

$$|\mathcal{S}| \ge \frac{|\mathbf{S}| - 10}{18}.$$

Proof. If $|\mathcal{S}| \geq 11$, apply Lemma 3.2 to any segment of length 7. We obtain a vertex O_1 which has a neighbour $N \in \mathbf{T}$ such that $\delta(N) \geq n/4$ and such that $N+O_1$ labels an edge of \mathbf{S} at most six edges away from O_1 . O_1 is therefore the center of an h-segment σ_1 of \mathbf{S} . Then, if there are at least 19 edges in \mathbf{S} that are not in σ_1 , choose another segment of length 7, whose nearest endpoint is eleven edges away from O_1 . Lemma 3.2 yields again the center O_2 of an h-segment σ_2 , disjoint from σ_1 and such that $d_{\mathbf{S}}(O_1, O_2) \leq 18$. Repeat the procedure and construct a sequence $\sigma_1, \dots, \sigma_i$ of disjoint h-segments. As long as there remains in \mathbf{S} a segment of 19 edges that does not contain any edge of any of the σ_i 's, we can add an h-segment σ_{i+1} whose center O_{i+1} is at most 18 edges away from the center O_i of σ_i .

In the next section we show that h-segments that share the same N must yield vertices of T of high degree.

5. More vertices of high degree

Let σ and σ' be two disjoint h-segments:

$$V_{-5} \stackrel{e_{-5}}{=} V_{-4} \cdots V_{-1} \stackrel{e_{-1}}{=} O \stackrel{e_{1}}{=} V_{1} \cdots V_{4} \stackrel{e_{5}}{=} V_{5}$$

and

$$V'_{-5} \stackrel{e'_{-5}}{=} V'_{-4} \cdots V'_{-1} \stackrel{e'_{-1}}{=} O' \stackrel{e'_{1}}{=} V'_{1} \cdots V'_{4} \stackrel{e'_{5}}{=} V'_{5}$$

together with the corresponding vertices N, N' and labels v, v'. In the remainder of this section we suppose N' = N, so that we have N = O + v = O' + v'.

Let X' denote the vertex of σ' , nearest to O', such that $X' + v' \in \mathbf{S}$. Without loss of generality, suppose $X' \in \{V'_1, \dots, V'_5\}$.

Lemma 5.1. We have $v' \neq e_1$ and $v' \neq e_{-1}$. Similarly $v \neq e'_1$ and $v \neq e'_{-1}$.

Proof. We have $V_1 + O' = e_1 + v + v'$. Because V_1 and O' are nonadjacent vertices of **S** we must have $v' \neq e_1$. The other cases follow from considering nonadjacent pairs of vertices V_{-1} and O', V'_1 and O, V'_{-1} and O.

Lemma 5.2. Suppose that $d_{\mathbf{S}}(O, O') \ge 13$, so that any vertex of σ' is separated from any vertex of σ by at least three edges of \mathbf{S} .

Let k be the smallest $i \in \{1, \dots, 5\}$, such that $V'_i + v' \in \mathbf{S}$. Then $\{e_1, \dots, e_k\} \neq \{e'_1, \dots, e'_k\}$, and $\{e_{-1}, \dots, e_{-k}\} \neq \{e'_1, \dots, e'_k\}$.

Proof. We have $V'_k + v' \in \mathbf{S}$. Consider the path

$$V_k \cdots O - N - O' \cdots V_k' + v'$$

to obtain $V_k + (V'_k + v') = e_1 + \dots + e_k + v + v' + e'_1 + \dots + e'_k + v'$. Therefore, if $\{e_1, \dots, e_k\} = \{e'_1, \dots, e'_k\}$, then $V_k + (V'_k + v') = v$, so that V_k and $V'_k + v'$ are adjacent, which contradicts $d_S(O, O') \ge 13$. The other case is analogous.

The following lemma is the main result of this section.

Lemma 5.3. Suppose that $d_{\mathbf{S}}(O,O') \geq 13$. Suppose $v'+V \in \mathbf{T}$ for all vertices V of σ , and $v+V' \in \mathbf{T}$ for all vertices V' of [O',X']. Then there exist four distinct vertices P_1,P_2,P_3,P_4 of \mathbf{T} such that

- $P_i + v' \in \sigma$ for i = 1, 2, 3 and $P_4 + v \in [O', X']$.
- $\sum_{i=1}^4 \delta(P_i) \geq n$.

Proof. Consider the translate of σ by v':

$$M_{-5} \stackrel{e_{-5}}{=} M_{-4} \cdots M_{-1} \stackrel{e_{-1}}{=} M_0 \stackrel{e_1}{=} M_1 \cdots M_4 \stackrel{e_5}{=} M_5$$

where $M_0 = O + v'$, $M_i = V_i + v'$ for $i \in \{-5, \dots, -1, 1, \dots, 5\}$. All the vertices M_i , $i \in \{-5, \dots, +5\}$, are in **T**.

Notice that $M_0 = O' + v$. Consider $M_1' = V_1' + v \in \mathbf{T}$. We have $M_1' + M_0 = v + e_1' + v = e_1'$, so that M_1' is adjacent to M_0 . Figure 2 illustrates the situation.

1. If $e'_1 \neq e_1$ and $e'_1 \neq e_{-1}$. Then $M'_1 \neq M_1$ and $M'_1 \neq M_{-1}$, so that the vertices M_{-1}, M_0, M_1, M'_1 are distinct. Because M_0 is adjacent to all three others, we have, by Lemma 3.1:

$$\delta(M_{-1}) + \delta(M_0) + \delta(M_1) + \delta(M_1') \ge n.$$

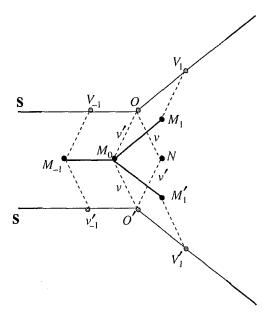


Fig. 2. More vertices of T of degree 3

Therefore the result holds with $P_1 = M_{-1}$, $P_2 = M_0$, $P_3 = M_1$, $P_4 = M_1'$.

- 2. If $e'_1 = e_1$. Consider $M'_2 = V'_2 + v$. We have then $M'_2 + M_1 = v + e'_2 + e'_1 + v + e_1 = e'_2$, so that M'_2 is adjacent to M_1 . If $e'_2 \neq e_2$, i.e. $M'_2 \neq M_2$, then M_0, M_1, M_2, M'_2 are distinct vertices and they yield the desired set $\{P_1, P_2, P_3, P_4\}$. If $e'_2 = e_2$, then consider $M'_3 = V'_3 + v$ together with M_1, M_2, M_3 and so on. By Lemma 5.2, this process must stop before we reach $M'_i = V'_i + v$ for $V'_i = X'$.
- 3. If $e'_1 = e_{-1}$. This time move downwards along the chain of M_is . We have $M'_2 + M_{-1} = v + e'_2 + e'_1 + v + e_{-1} = e'_2$, so that M'_2 is adjacent to M_{-1} . If $e'_2 \neq e_{-2}$, then $M_0, M_{-1}, M_{-2}, M'_2$ are distinct vertices and yield the desired P_1, P_2, P_3, P_4 . If $e'_2 = e_{-2}$, look at M'_3 together with M_{-1}, M_{-2}, M_{-3} and so on. Again this process must stop before we consider $M'_i = X' + v$ by Lemma 5.2.

6. Two counting arguments

Let $\mathcal S$ be a set of disjoint h-segments of **S**. Let $\mathcal N$ be the set of vertices of high degree produced by $\mathcal S$, i.e.

$$\mathcal{N} = \bigcup_{\sigma \in \mathcal{S}} \{ N(\sigma) \}.$$

It is clear that:

Lemma 6.1. Let $\Delta = \sum_{V \in \mathbf{T}} \delta(V)$. We have:

$$\Delta \geq |\mathcal{N}| \frac{n}{4}.$$

 \mathcal{N} induces the partition of \mathcal{S}

$$\mathcal{S} = \bigcup_{N \in \mathcal{N}} \Sigma_N$$

where $\Sigma_N = \{ \sigma \in \mathcal{S} \mid N(\sigma) = N \}.$

Now for a given vertex $N \in \mathcal{N}$, let Π_N denote the set of couples (σ, σ') of $\Sigma_N \times \Sigma_N$ such that

- $V+v' \in \mathbf{T}$ for all $V \in \sigma$, and $V'+v \in \mathbf{T}$ for all $V' \in [O', X']$
- $d_{\mathbf{S}}(O, O') \ge 13$.

Lemma 6.2. We have $|\Pi_N| \ge |\Sigma_N|(|\Sigma_N| - 16)$.

Proof. Fix $\sigma \in \Sigma_N$. The number of h-segments $\sigma' \in \Sigma_N$ such that $v' \neq v$ and $V+v' \in \mathbf{S}$ for some $V \in \sigma$ is at most the number of different choices of v' that label an edge of \mathbf{S} incident to a vertex of σ . Since $v' \neq e_1, v' \neq e_{-1}$ (Lemma 5.1), and v labels an edge of \mathbf{S} incident to a vertex of σ , this number is at most 9. Hence, the overall number of couples (σ, σ') such that $v' \neq v$ and $V+v' \in \mathbf{S}$ for some $V \in \sigma$ is at most $9|\Sigma_N|$. Similarly, by fixing σ' we obtain that the number of couples (σ, σ') such that $v' \neq v$ and $V'+v \in \mathbf{S}$ for some $V' \in [O', X']$ is at most $4|\Sigma_N|$. Again fixing σ , there are at most two choices of v' that can yield σ' such that $d_{\mathbf{S}}(O, O') < 13$. Hence, $|\Pi_N| \geq |\Sigma_N| (|\Sigma_N| - 1) - 9|\Sigma_N| - 4|\Sigma_N| - 2|\Sigma_N| \geq |\Sigma_N| (|\Sigma_N| - 16)$.

Lemma 5.3 enables us to define, for every $N \in \mathcal{N}$, 4 functions P_1, P_2, P_3, P_4

$$\begin{array}{ccccc} P_i: & \Pi_N & \longrightarrow & \mathbf{T} \\ & \pi = (\sigma, \sigma') & \mapsto & P_i(\pi) \end{array}$$

such that, (we shall abuse notation slightly by writing P_i instead of $P_i(\pi)$)

1. For any given $\pi = (\sigma, \sigma') \in \Pi_N$, the vertices $P_i(\pi)$ are distinct for i = 1, 2, 3, 4 and

$$\sum_{i=1}^{4} \delta(P_i) \ge n.$$

2. $P_i + v' \in \sigma$ for i = 1, 2, 3 and $P_4 + v \in \sigma'$.

The following lemma is the crucial argument of this section. It consists of an evaluation of the total degree Δ of T through the functions P_i .

Lemma 6.3. Let $\Delta = \sum_{V \in \mathbf{T}} \delta(V)$. We have:

$$\Delta \ge \sum_{N \in \mathcal{N}} \sum_{\pi \in \Pi_N} \sum_{i=1}^4 \frac{\delta(P_i(\pi))}{2(n - \delta(P_i(\pi)))}.$$

Proof. The counting procedure consists of adding the contribution of each $P_i(\pi)$, produced by every $\pi = (\sigma, \sigma')$ for every Π_N , to the global degree Δ . The crucial point is that every time a vertex P of \mathbf{T} is produced by some function P_i and a couple (σ, σ') , it comes together with an edge labeled x, with either x = v or x = v', linking it to a vertex of either σ' or σ respectively. Therefore, P together with x determine $\{\sigma, \sigma'\}$ up to ordering. (P and x determine uniquely an h-segment τ such that $P+x \in \tau$, and τ' is determined in turn by $N(\tau') = N(\tau) = N$ and $O(\tau') = N+x$. We must have $\{\sigma, \sigma'\} = \{\tau, \tau'\}$). Hence, since the segments of \mathcal{S} are disjoint, the number of times a given P can be produced by this counting scheme is at most twice the number of edges relating P to \mathbf{S} , i.e. $2(n-\delta(P))$.

The rest is now straightforward counting.

Lemma 6.4. Let $a = |\mathcal{S}|/|\mathcal{N}|$. We have:

$$\Delta \geq \frac{2}{3}|\mathcal{S}|(a-16).$$

Proof. Let us apply Lemma 6.3. Since $\sum_{i=1}^{4} \delta(P_i) \ge n$, the quantity

$$\sum_{i=1}^{4} \frac{\delta(P_i)}{n - \delta(P_i)}$$

is minimized when $\delta(P_i) = n/4$, i.e.

$$\sum_{i=1}^{4} \frac{\delta(P_i)}{n - \delta(P_i)} \ge \frac{4}{3}$$

whence

$$\Delta \geq \sum_{N \in \mathcal{N}} \frac{2}{3} |\Pi_N| \geq \sum_{N \in \mathcal{N}} \frac{2}{3} |\Sigma_N| (|\Sigma_N| - 16)$$

by Lemma 6.2. Since $\sum_{N \in \mathcal{N}} |\Sigma_N| = |\mathcal{S}|$, the righthandside of the last inequality is minimized for $|\Sigma_N| = |\mathcal{S}|/|\mathcal{N}| = a$ for every $N \in \mathcal{N}$, hence

$$\Delta \geq rac{2}{3}|\mathcal{N}|a(a-16)$$

hence the result.

Lemma 6.5. We have:

$$\Delta \ge |\mathcal{S}| \left(\frac{n^{1/2}}{\sqrt{6}} - 6 \right).$$

Proof. Lemmas 6.1 and 6.4 together yield:

$$\Delta \geq \min_{a} \max \left(|\mathcal{S}| \frac{n}{4a} \; , \; |\mathcal{S}| \frac{2}{3} (a - 16) \right).$$

The minimum in the righthandside of this last inequality is achieved for a(a-16) = 3n/8, i.e. for

$$\frac{2}{3}(a-16) = \sqrt{\frac{16^2}{9} + \frac{n}{6}} - \frac{16}{3} \ge \frac{n^{1/2}}{\sqrt{6}} - 6.$$

Proof of theorem 1.1. Apply Lemmas 4.1 and 6.5. We obtain

$$\Delta \ge \frac{|\mathbf{S}| - 10}{18} \left(\frac{n^{1/2}}{\sqrt{6}} - 6 \right),$$

which together with Lemma 2.1 yields

$$n2^{n-1} \ge |\mathbf{S}| \left[(n-1) + \frac{1}{36} \left(\frac{n^{1/2}}{\sqrt{6}} - 6 \right) \right] - \frac{5}{18} \left(\frac{n^{1/2}}{\sqrt{6}} - 6 \right).$$

The result follows after routine adjustments.

References

- [1] H. L. Abbot: Some Problems in Combinatorial Analysis, PhD thesis, University of Alberta, Edmonton, Canada, 1965.
- [2] H. L. ABBOT and M. KATCHALSKI: On the construction of snake in the box codes, *Utilitas Mathematica*, **40** (1991), 97–116.
- [3] L. DANZER and V. KLEE: Length of snakes in boxes, J. Combin. Theory, 2 (1967), 258–265.
- [4] K. Deimer: A new upper bound for the length of snakes, Combinatorica, 5 (1985), 109-120.
- R. J. DOUGLAS: Upper bounds on the length of circuits of even spread in the d-cube,
 J. Combin. Theory, 7 (1969), 206-214.
- [6] A. A. EVDOMIKOV: Maximal length of a circuit in a unitary n-dimensional cube, Mat. Zametki, 6 (1969), 309–329.

- [7] V. V. GLAGOLEV: An upper estimate of the length of a cycle in the *n*-dimensional unit cube, *Diskretnyi Analiz*, 6 (1966), 3–7.
- [8] W. H. KAUTZ: Unit distance error checking codes, IRE Trans. Electron. Comput., 7 (1958), 179–180.
- [9] D. G. LARMAN: Circuit codes. quoted from [5], 1968.
- [10] R. C. SINGLETON: Generalized snake-in-the-box codes, IEEE Trans. Electronic Computers, EC-15 (1966), 596-602.
- [11] H. S. Snevily: The snake-in-the-box problem: A new upper bound, *Discrete Math.*, 133 (1994), 307–314.
- [12] F. I. SOLOV'JEVA: An upper bound for the length of a cycle in an *n*-dimensional unit cube, *Diskretnyi Analiz*, **45** (1987).

Gilles Zémor

Ecole Nationale Supérieure des Télécommunications Network Dept. 46 rue Barrault, 75634 Paris 13, FRANCE zemor@res.enst.fr